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DIFFUSION TO A PARTICLE IN A SHEAR GAS FLOW 
IN THE CASE OF ARBITRARY KINETICS OF TPE SURFACE REACTION‘ 

A. D. PGLIANIN 

Diffusion to a particle ix a shear f:ow at smai, Pcc:et and Reynolds nz*ers IS 
consldered in the case when a chemical reaction.. tic rate O: 22;ch depcntls ::n rl,c 

concentration in an arbitrary manner, takes place a: it.5 surf3::e. The hedt .nnd ~a.ss 
transfer Ln a particle ir. a tracslaticnal flow ai viscous Incompressible fiti 3’ 
small Peclet and Reynolds numbers wer9 stildied ;:: /:-- 7:. Tht; 3 1 f f “slo:: code of thci 
react.ion at the particle surface ki.4~ studied :n ii- I/‘, and a ‘heterogenr+oLs react lo!: 
of the first, second and arbl trsry ;rdrr were :-?:,s~iierc~d :i, , ,;- i./‘, ,/>I, ar.2 /7/’ r<,- 
spectlveiy. The papers /a-10/ de<11 with the C;~SP I,$ <J~ffus~i::: mc~ic ~_>f r-f?acti:~r: hit 
the particle surface freely suspended 1n ,f shear flow. 

Using a sp:herical r. 13. h-coordir&at.e system .at.tac!lw_l t:., thr ;)art ;::Le, WC \J.il, desCr15c. rr1i. 
reagent. transfer process in the fluid using the followino co:wecr i vo dl r’f,l.sl L:; cvlu.3t. 13ri .Il,.J 
boundary conditlors: 
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case of simple shear (one nondiagonal element of the matrix C,j is equal to unity andthe rest 

are zero) a = 0.258 /8/. 
Using the results of /l,lO/ we can show that for the inner expansion in the region {I s 

r<~(~-"))the following representation holds: 

(5) 

where 9 is the root of the equation 

_9Tf(1_9)==0 

Functions c2 and cg satisfy the equation /lo/ 

A+,,, = -r-3 u,,, (us = 2, 3) 

and boundary conditions 
ac, 1 

r=l, dr - ,\I,Ci f-z_ a2qq*%,w-’ = 0 

ac3 1 
r = 1, -&- - W,CJ - 9w,'!J-'cI + T a2g~q*'o,o,-~' _ 0 

(6) 

(7) 

(8) 

which are obtained by substituting the expression (5) into the boundary conditions (2) at the 

particle surface, expanding into series and separating the terms accompanying the like powers 

of the small parameter p’?. Integrating (7) over the surface of the sphere S of radius v>l 

and taking into account the incompressibility of the fluid, we obtain, in accordance with/lo/ 

(9) 

The general solution of (9) has the form 

cr,,i = O,,i f B,,r_ (10) 

Integration of the boundary conditions (8) over S at r= 1, yields two linear algebraic equa- 

tions for determining the unknown coefficients a,?1 and b,. Integration of (5) with (10) taken 

into account, and subsequent merging with the integral of the outer solution (4), yields def- 

icient (linear) algebraic relations for determining the coefficients u, and &, in (10) and the 

unknown function 0 appearing in the expression (4). Let us write the final expression for 
the mean Sherwood number 

Sk z --tOc dr) I,_-_, = (1) (P) = q (1 -, P -v (1 + '/199&1,o~-~) &* f 
(I + ~/?99*w+J-:' - ‘l,q~q*%J~‘lJJ, 5 m’ ‘/q q’q*w$o-4) &J + 0 (El)). 

c = aq,P’ A 

(11) 

The coefficients 9, 9, and w ,, are defined in the formula (5) and (6). 

In the case of the linear kinetics of the surface reaction f(r) = kl- t ‘ihe formula (11) 
simplifies and assumes the form 

SII = 9 (I - aqP’ :)-I o (I” ‘). q = k (k m, I)-’ (12) 

When k--m (q--.1), the expression (12) becomes identical with the result of /lo/. Using direct 
substitution we can show that (11) can be obtained by solving the following algebraic (trans- 

cendental) equation 

Sh = , (I - ::I1 .>h=) 
(13) 

where (Sh, is the Sherwood number in the case of a shear flow past a sphere for d di:fuslve 
reaction mode /lo/, which corresponds to the value ', =- I (I< := w, 1n (12). It should be noted 
that the equation /13/ yields a correct result also in the case of a translational Stokes flow 
past a plane. We can show this by substituting into (13) the expression for 'I, ~ obtainedin 
/l/, and solving the resulting equation for >ll . This procedure yields the result of /7/. 

It can be shown that in the case of an arbitrary flow of an incompressible fluid past a 
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spherical particle (a drop), equation (14) yields a correct result for at least first two 

terms of the asymptotic expansion of the mean Sherwood number Sh in terms of the smallPeclat 

number (Sk, corresponds to the diffusM& reaction mode). The assertion can be proved as 

follows. At small Peclet numbers the zso%erm of.the inner expansion is independent of the 

type of flow past the sphere and is determined by the expression (5) with P= 0. This leads 

to the appearance of a supplementary (compared with the diffusion reaction mode) multiplier 

P in the principal term of the outer expansion. Moreover, the boundary condition at the 

sphere surface coincides, for the first term of the inner expansion c,, with the first bound- 

ary condition of (8) when w,=O,and the expression for c, is either given by the homogeneous 

Laplace equation, or it coincides with equation (7). In all cases the equation implies that 
the representation (10) holds for (cl). The boundary condition for r 2 1 yieldsasinglellnear 
equation for determining the coefficients (1, and b,. and the second necessary relation is 

obtained from the condition of merger with the principal term of the outer expansion. These 

equations together yield ~1, and b,. Comparison of the two-term expansion obtained in this 

manner for the mean Sherwood number shows, that Sh coincides, with the required accuracy, 

with the root of the equation (13). 

It can be shown that in the case of a particle of arbitrary form freely suspended in a 
shear flow, the following formula for the mean Sherwood number holds for the linear ki'netics 

of the surface reaction: 

Sh;Sh, - I -t Q ih,P" 2 1' U'Sh,'P + 0 (P") (14) 

Here the mean Sherwood number Sh, corresponds to the mass transfer between the reacting part- 

icle with f(r)-kz, and the stationary medium (i.e. at P = 0). and the coefficient ? is 

found in accgrdanca with /9/. The formula (141 is derrved in the same manner, as that used 
in /lo/ in investigating the case of a diffusion reaction mode (A --Ljust as the authors of 

/6/ generalized /2/ the results of /2/ to the case of a translational flow. 
1n the case of a solid sphere 'I,,= I;(/:+ I)“ and the formula (14) becomes, with the ac- 

curacy of up to 0 (P"') , (12) . 

The author thanks 1u.P. Gupalo and 1u.S. Riazantsev for valuable assessment. 
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